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Context and issues

lObjectives

■ Accurate modelisation and simulation of seismo-acoustic waves
l through heterogeneous domains with complex geometries

■ Treatment of realistic cases of interest
a ▶ High Performance Computing (HPC)

lIssues

■ Difficulty to mesh complex geometries
■ High-order precision needed to accurately capture waves
a ▶ Hybrid discontinuous methods (HDG/HHO)

Fig. 1: Lateral heterogeneities near the
earth’s surface.

Coupling of the acoustic and elastic wave equations

■ Acoustic wave equation:

 ρF∂tv
F(t) +∇p(t) = 0

1

κ
∂tp(t) +∇ · vF(t) = g(t)

■ Elastic wave equation:

{
∂tε(t)−∇svS(t) = 0

ρS∂tv
S(t)−∇ · (C : ε(t)) = f (t)

■ Coupling condition:

{
Jv(t) · nΓKΓ = 0

(C : ε(t)) · nΓ = p(t)nΓ

The HHO method

lDegrees of freedom

■ Principle: Polynomial unknowns located in the cells and on the faces

Cell unknowns of degree k′ Face unknowns of degree k

HHO unknowns:

ûh := (uT , uF)

Fig. 2: Left panel: Equal-order discretization (k′ = k = 0).
Right panel: Mixed-order discretization (k′ = k + 1 = 1).

lOperators

■ Gradient reconstruction operator: ∇u → G(ûh)

■ Stabilization operator: s(ûh, ŵh)
a ▶ Penalization at the element level to ensure stability while

preserving the approximation properties of the reconstruction.

lAdvantages

■ Mesh flexibility:
a ▶ Complex geometries
a ▶ Unstructured and polyhedral meshes
a ▶ Local mesh refinement

■ Local conservativity

■ Optimal error estimates for smooth solutions

■ Attractive computational costs:
a ▶ Global problem couples only face dofs
a ▶ Cell dofs recovered by local post-processing

Assembly Static condensation

Fig. 3: Static condensation procedure.

HHO space semi-discretization

■ Approximation spaces:

a ▶ Acoustic domain:
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a ▶ Elastic domain:
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Elastic unknowns

Elasto-acoustic interface Γ

Acoustic unknowns

Fig. 4: Elasto-acoustic unknowns with a mixed-order (k′ = k + 1 = 1) discretization.

■ Elasto-acoustic coupling:

(∂tv
F
T (t), rT )L2(ρF;ΩF)

+ (GT (p̂h(t)), rT )L2(ΩF)
= 0

(∂tpT (t), qT )L2(1κ;ΩF)
− (vFT (t),GT (q̂h))L2(ΩF)

+ sFh(p̂h(t), q̂h)− (vSF(t) · nΓ, qF)L2(Γ) = (g(t), qT )L2(ΩF)

(∂tεT (t), zT )L2(ΩS)
− (ET (v̂h(t)), zT )L2(ΩS)

= 0

(∂tvT (t),wT )L2(ρ;ΩS)
+ (εT ,ET (ŵh))L2(C:ΩS)

+ sSh(v̂
S
h(t), ŵh) + (pF(t),wF · nΓ)L2(Γ) = (f (t),wT )L2(ΩS)

■ Algebraic realization:
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Numerical results

■ Verification of convergence rates on analytical solutions:

a ▶ O(hk+1) in H1-norm ▶ O(hk+2) in L2-norm (superconvergence)

Fig. 5: Left panel: Errors as a function of the mesh size with ∆t = 0.1 × 2−5. Right
panel: Errors as a function of the time-step with k′ = k + 1 = 6 and dx = 2−5.

■ Realistic test case

Fig. 6: Two-dimensional distribution of the acoustic pressure (upper side) and elastic
velocity norm (lower side), predicted by the HHO-SDIRK (3, 4) at t = 5 s.
Simulation parameters: k′ = k + 1 = 2,dx = 2−8 and ∆t = 0.1 × 2−8.

a ▶ Computational domain:
a • Acoustic region on the upper side
a • Elastic region on the lower side

a ▶ Homogeneous Dirichlet conditions

a ▶ Intial condition: pressure Ricker wavelet

p0(x, y) := − 4

10

√
10

3
(1600r2 − 1)π−1/4 e−800r2

vF
0 := 0, vS

0 := 0, ε0 := 0.

a ▶ Time integration scheme: SDIRK(s,s+1)

Energy conservation of the scheme

■ Mechanical energy of the scheme: Eh(t) := ESh(t) + EFh (t) with

EFh (t) :=
1

2
||vFT (t)||

2
L2(ρF;ΩF)

+
1

2
||pT (t)||2L2(1κ;ΩF)

, ESh (t) :=
1

2
||vST (t)||

2
L2(ρS;ΩS)

+
1

2
||εT (t)||2L2(C;ΩS)

■ Semi-discrete energy conservation of the scheme

Eh(t) = Eh(0) +
∫ t

0

[
(f (α),vST (α))L2(ΩS)

+ (g(α), pT (α))L2(ΩF) − sSh(v̂
S
h(α), v̂

S
h(α))− sFh(p̂h(α), p̂h(α))

]
dα

■ Validation on analytic test cases [1] [2] [3] [4]

Fig. 7: Demonstration of the negligible nature of the energy dissipation introduced by the HHO scheme.
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