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I. Introduction I.1. Context

Goal

Accurate modeling and simulation of seismo-acoustic waves through

heterogeneous domains with complex geometries

Fig. 1: Global seismic wave propagation Fig. 2: Local heterogeneities of the Earth

Minimize numerical dispersion and dissipation for long time propagation

Commonly used numerical tools

Spectral Element Method (cG) / Finite Differences (FDTD)

Main issue: Complex mesh generation for realistic geological structures
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I. Introduction I.2. dG and HHO methods

cG vs. dG methods

Main advantages of dG methods

Mesh flexibility: Handling of unstructured / polyhedral meshes

Local conservativity at the element level

Same order of convergence as cG for smooth solutions:

▶ H1-error: O
(
hk
)

▶ L2-error: O
(
hk+1

)
Drawbacks of dG methods

Higher computational cost and memory requirement

continuous Galerkin (cG) discontinuous Galerkin (dG)

Fig. 3: Discrete unknowns for cG and dG methods
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I. Introduction I.2. dG and HHO methods

Introduction to HHO methods

Seminal papers: [Di Pietro, Ern, and Lemaire, 2014], [Di Pietro and Ern, 2015]

Degrees of freedom

Polynomial unknowns attached to mesh cells and faces

Cell unknowns, degree k′ ∈ {k, k + 1} Face unknowns, degree k ≥ 0

HHO unknowns:

ûh := (uT , uF) ∈ Ûh

Fig. 4: Local HHO unknowns. Left: k′ = k = 0. Right: k′ = k + 1 = 1.

▶ Equal-order: k′ = k

▶ Mixed-order: k′ = k + 1
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I. Introduction I.2. dG and HHO methods

Design

Gradient reconstruction operator:

(∇u)|T → GT (ûT ) ∈ Pk(T ;Rd)

Design of GT (ûT ) mimics an integration by parts

Stabilization operator: δ∂T (ûT ) := u∂T − uT |∂T ≈ 0

Matching of cell dofs trace with face dofs (weakly)

Advantages of HHO over dG methods

Improved error estimates for smooth solutions

▶ H1-error: O
(
hk+1

)
▶ L2-error: O

(
hk+2

)
Attractive computational costs

Elimination of cell unknowns by static condensation

▶ Global problem couples only face dofs

▶ Cell dofs recovered by local post-processing

Link to other methods

HHO ≡ HDG ≡ WG ≡ ncVEM

[Cockburn, Di Pietro, and Ern, 2016] [Lemaire, 2020] [Cicuttin, Ern, and Pignet, 2021]
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I. Introduction I.2. dG and HHO methods

Mesh

Space

semi-discretization

Local dofs

Assembly

Global dofs

Static condensation

Coupled dofs

(face)

Fig. 5: Assembly and static condensation procedure in HHO framework
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I. Introduction I.3. Model Problem

Model problem:

Ωs Ωf

Γ

Ω := Ωs ∪Ωf

Elasto-acoustic interface Γ

Fig. 6: Setting for elasto-acoustic coupling

Strong form of acoustic and elastic wave equation in 1st order formulation{
∂tε−∇sv

s = 0

ρs∂tv
s −∇ · (C:ε) = f s

 ρf∂tv
f −∇p = 0

1

κ
∂tp−∇ · vf = f f

Unknowns

▶ vs elastic velocity field

▶ ε := ∇su linearized strain tensor

▶ p scalar pressure field

▶ vf acoustic velocity field

Parameters

▶ ρs, C(λ, µ) (Lamé coefficients)

▶ csp :=

√
λ+ 2µ

ρs
, cs :=

√
µ

ρs

▶ ρf, κ

▶ cfp :=

√
κ

ρf
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I. Introduction I.3. Model Problem

Coupling conditions{
vs · nΓ = vf · nΓ

(C:ε) · nΓ = p nΓ

▶ Balance of mass + Non-penetration condition

▶ Balance of forces

Initial and boundary conditions

Initial conditions on (ρs,vs) and (ρf,vf)

Homogeneous Dirichlet boundary conditions on ∂Ω for simplicity
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II. RK-HHO discretization
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II. RK-HHO discretization II.1. HHO space semi-discretization

HHO space semi-discretization

Elastic domain: Zk′
T s :=×

T∈T
h

Pk
(T ;Rd×d

sym )

︸ ︷︷ ︸
space for ε

, Û s

h :=×
T∈T

h

Pk′
(T ;Rd

) × ×
F∈Fs

h

Pk
(F ;Rd

)

︸ ︷︷ ︸
space for vs

Acoustic domain: Vk
T f :=×

T∈T
h

Pk
(T ;Rd

)

︸ ︷︷ ︸
space for vf

, Ûf
h :=×

T∈T
h

Pk′
(T ;R) × ×

F∈Ff
h

Pk
(F ;R)

︸ ︷︷ ︸
space for p

vs
T

vs
T

pF

pT εT vf
T

Elastic unknowns Acoustic unknowns

Fig. 7: Elasto-acoustic unknowns with k′ = 1 and k = 0. Left: HHO unknowns for vs and

p. Right: dG unknowns for ε and vf.

References

Same discretization as for acoustic [Burman, Duran, and Ern, 2022] and elastic [Burman,

Duran, Ern, and Steins, 2021] problems, but with coupling terms
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II. RK-HHO discretization II.1. HHO space semi-discretization

Local reconstruction operators

Strain reconstruction: ET (v̂
s
T ) ∈ Pk(T ;Rd×d

sym ) s.t. for all v̂s
T ∈ Û

s

T ,

(ET (v̂
s
T ), ζ)T = (∇sv

s
T , ζ)T − (vs

T − vs
∂T , ζ · nT )∂T , ∀ζ ∈ Pk(T ;Rd×d

sym )

Gradient reconstruction: GT (p̂T ) ∈ Pk(T ;Rd) s.t. for all p̂T ∈ Ûf
T ,

(GT (p̂T ), q)T = (∇pT , q)T − (pT − p∂T , q · nT )∂T , ∀q ∈ Pk(T ;Rd)

Local stabilization operators

Mixed-order discretization: Stabilization in HDG (Lehrenfeld-Schöberl)

S∂T (p̂T ) := Πk
∂T (pT − p∂T ) S∂T (v̂

s
T ) := Πk

∂T (v
s
T − vs

∂T )

Equal-order discretization: Specific stabilization to HHO

▶ Needs additional velocity and pressure reconstructions
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II. RK-HHO discretization II.1. HHO space semi-discretization

HHO space semi-discretization for the elasto-acoustic coupling

Elastic wave equation: ET (v̂s
h)|T := ET (v̂

s
T )

(∂tεT (t),zT )Ωs − (ET (v̂s
h(t)),zT )Ωs = 0

(ρs∂tv
s
T s(t),wT )Ωs + (C:εT ,ET (ŵh))Ωs + ssh(v̂

s
h, ŵh) + (pF (t),wF · nΓ)Γ = (f s(t),wT )Ωs

Acoustic wave equation: GT (p̂h)|T := GT (p̂T )

(ρf∂tv
ft(t), rT )Ωf + (GT (p̂h(t)), rT )Ωf = 0

( 1
κ
∂tpT (t), qT )Ωf − (vft(t),GT (q̂h))Ωf + sfh(p̂h(t), q̂h) − (vfs(t) · nΓ, qF )Γ = (f f(t), qT )Ωf

Global stabilization forms

ssh(v̂
s
h, ζ̂h) =

∑
T∈T

h

τ s
T (S∂T (v̂

s
T ),S∂T (ζ̂T ))∂T

sfh(p̂h, q̂h) =
∑
T∈T

h

τ f
T (S∂T (p̂T ),S∂T (q̂T ))∂T

with two strategies: τ s
T = O(1) = τ f

T or τ s
T = O(1/h) = τ f

T
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II. RK-HHO discretization II.1. HHO space semi-discretization

Algebraic realization

Static coupling between cell and face unknowns



Mvf

T T 0 0 0 0 0

0 Mf
T T 0 0 0 0

0 0 0 0 0 0

0 0 0 Mε
T T 0 0

0 0 0 0 Ms
T T 0

0 0 0 0 0 0


d

dt



Vf
T f

PT f

PFf

ST s

Vs
T s

Vs
F s


+



0 −GT −GF 0 0 0

G†
T ΣF

T T ΣF
T F 0 0 0

G†
F ΣF

FT ΣF
FF 0 0 CΓ

0 0 0 0 −ET −EF

0 0 0 E†
T ΣS

T T ΣS
T F

0 0 −C†
Γ E†

F ΣS
FT ΣS

FF





Vf
T f

PT f

PFf

ST s

Vs
T s

Vs
F s


=



0

Ff
T f

0

0

Fs
T s

0



Rearrangement of dofs: cell unknowns first and then face unknowns



Mvf

T T 0 0 0 0 0

0 Mf
T T 0 0 0 0

0 0 Mε
T T 0 0 0

0 0 0 Ms
T T 0 0

0 0 0 0 0 0

0 0 0 0 0 0


d

dt



Vf
T f

PT f

ST s

Vs
T s

PFf

Vs
F s


+



0 −GT 0 0 −GF 0

G†
T Σf

T T 0 0 Σf
T F 0

0 0 0 −ET 0 −EF

0 0 E†
T Σs

T T 0 Σs
T F

G†
F Σf

FT 0 0 Σf
FF CΓ

0 0 E†
F Σs

FT −C†
Γ Σs

FF





Vf
T f

PT f

ST s

Vs
T s

PFf

Vs
F s


=



0

Ff
T f

0

Fs
T s

0

0
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II. RK-HHO discretization II.2. Singly diagonally implicit RK schemes

SDIRK(s, s+ 1) schemes

Generic ODE with f : J × Rm → Rm,{
y′(t) = f(t, y(t)), ∀t ∈ J := [0, T )

y|t=0 = y0 ∈ Rm

SDIRK(s, s+ 1) consists

▶ in solving sequentially for all i ∈ {1, ..., s},

u
[n]
i = un−1 +∆t

i∑
j=1

aijf(tn−1 + cj∆t, u
[n]
j )

▶ and setting

un := un−1 +∆t

s∑
j=1

bjf(tn−1 + cj∆t, u
[n]
j )

c1 a∗ 0 · · · 0

c2 a21 a∗
. . . 0

...
...

. . .
. . .

...

cs as1 · · · as,s−1 a∗

b1 · · · bs−1 bs
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II. RK-HHO discretization II.2. Singly diagonally implicit RK schemes

Algebraic realization of SDIRK-HHO

Face-based sparse linear system to be solved at each stage

We solve sequentially for all i ∈ {1, ..., s},


Mvf

T T 0 0 0 0 0

0 Mf
T T 0 0 0 0

0 0 Mε
T T 0 0 0

0 0 0 Ms
T T 0 0

0 0 0 0 0 0

0 0 0 0 0 0





Vf,n,i
T f

Pn,i
T f

Sn,iT s

Vs,n,i
T s

Pn,i
Ff

Vs,n,i
F s


=



Mvf

T T 0 0 0 0 0

0 Mf
T T 0 0 0 0

0 0 Mε
T T 0 0 0

0 0 0 Ms
T T 0 0

0 0 0 0 0 0

0 0 0 0 0 0





Vf,n−1
T f

Pn−1
T f

Sn−1
T s

Vs,n−1
T s

Pn−1
Ff

Vs,n−1
F s



+∆t
i∑

j=1

aij





0

F
f,n−1+cj
T f

0

F
s,n−1+cj
T f

0

0


−



0 −GT 0 0 −GF 0

G†
T Σf

T T 0 0 Σf
T F 0

0 0 0 −ET 0 −EF

0 0 E†
T Σs

T T 0 Σs
T F

G†
F Σf

FT 0 0 Σf
FF CΓ

0 0 E†
F Σs

FT −C†
Γ Σs

FF





Vf,n,j
T f

Pn,j
T f

Sn,jT s

Vs,n,j
T s

Pn,j
Ff

Vs,n,j
F s




The upper 4× 4 submatrix associated with all the cell unknowns is block-diagonal

▶ Schur complement procedure
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II. RK-HHO discretization II.3. Explicit RK schemes

ERK(s) schemes

ERK(s) consists

▶ in updating sequentially for all i ∈ {1, ..., s},

u
[n]
i = un−1 +∆t

i−1∑
j=1

aijf(tn−1 + cj∆t, u
[n]
j )

▶ and setting

un := un−1 +∆t
s∑

j=1

bjf
(
tn−1 + cj∆t, u

[n]
j

)

c1 0 · · · · · · 0

c2 a21 0 · · · 0
...

...
. . .

. . .
...

cs as1 · · · as,s−1 0

b1 · · · bs−1 bs
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II. RK-HHO discretization II.3. Explicit RK schemes

HHO-ERK scheme

Coupling of face unknowns at the interface Γ

Mvf

T T 0 0 0 0 0

0 Mf
T T 0 0 0 0

0 0 Mε
T T 0 0 0

0 0 0 Ms
T T 0 0

0 0 0 0 0 0

0 0 0 0 0 0





Vf,n,i
T f

Pn,i
T f

Sn,iT s

Vs,n,i
T s

Pn,i
Ff

Vs,n,i
F s


=



Mvf

T T 0 0 0 0 0

0 Mf
T T 0 0 0 0

0 0 Mε
T T 0 0 0

0 0 0 Ms
T T 0 0

0 0 0 0 0 0

0 0 0 0 0 0





Vf,n−1
T f

Pn−1
T f

Sn−1
T s

Vs,n−1
T s

Pn−1
Ff

Vs,n−1
F s



+∆t

i−1∑
j=1

aij





0

F
f,n−1+cj
T f

0

F
s,n−1+cj
T s

0

0


−



0 −GT 0 0 −GF 0

G†
T Σf

T T 0 0 Σf
T F 0

0 0 0 −ET 0 −EF

0 0 E†
T Σs

T T 0 Σs
T F

G†
F Σf

FT 0 0 Σf
FF CΓ

0 0 E†
F Σs

FT −C†
Γ Σs

FF





Vf,n,j
T f

Pn,j
T f

Sn,jT s

Vs,n,j
T s

Pn,j
Ff

Vs,n,j
F s




Key observation: Σf

FF CΓ

−C†
Γ Σs

FF

 has a block-diagonal structure for mixed-order HHO
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II. RK-HHO discretization II.3. Explicit RK schemes

Rearrangement of the face terms for the inversion of coupling block

Distinguish between internal faces in Ωs ∪ Ωf and faces located on Γ



Σf
FF 0 0 0

0 Σs
FF 0 0

0 0 Σf
FF CΓ

0 0 −C†
Γ Σs

FF





PF◦f
h

Vs
F◦s

h

PF◦Γ
h

Vs
F◦Γ

h





Σf
F1 CF1 0 0 0 0

−C†
F1 Σs

F1 0 0 0 0

0 0
. . . 0 0

0 0
. . . 0 0

0 0 0 0 Σf
Fn CFn

0 0 0 0 −C†
Fn Σs

Fn





PF1

Vs
F1

...

...

PFn

Vs
Fn
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III. Numerical results
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III. Numerical results III.1. Convergence rates

Computational parameters

Space refinement: h = 0.1× 2−ℓ (in each subdomain)

Time refinement: ∆t = 0.1× 2−n

Meshes

Fig. 8: Cartesian, simplicial and polyhedral meshes for ℓ = 0
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III. Numerical results III.1. Convergence rates

Convergence rates in time

■ Analytical solution: polynomial in space, sinusoidal in time

■ SDIRK-HHO scheme ■ ERK-HHO scheme

▶ k′ = k + 1 = 6 ▶ k′ = k + 1 = 5

▶ ℓ = 2 ▶ ℓ = 1

▶ n ∈ {3, 4, 5, 6, 7} ▶ n ∈ {6, 7, 8, 9}
▶ τf = O(1) = τ s ▶ τf = O(1) = τ s

Fig. 9: L2-errors for HHO-RK schemes as a function of the time-step
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III. Numerical results III.1. Convergence rates

Convergence rates in space

■ Analytical solution: polynomial in time, sinusoidal in space

■ SDIRK(3,4)-HHO scheme ■ n = 8 ■ ℓ ∈ {0, 1, 2, 3, 4}

Fig. 10: L2-errors for the HHO-SDIRK(3,4) schemes as a function of the mesh-size. Left:

τfT = O(1) = τ sT . Right: τfT = O(h−1
T ) = τ sT
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III. Numerical results III.2. Ricker wavelet

Ricker wavelet

■ SDIRK(3,4), k = 1, ℓ = 7, n = 9 ■ Homogeneous Dirichlet boundary conditions

■ Initial condition: velocity Ricker wavelet centered at point (xc, yc) ∈ Ωscf ,

v0(x, y) := θe
−π2 r2

λ2

(
x− xc

y − yc

)

Academic test case

▶ Homogeneous material properties: ρf = ρs = 1, csp =
√
3, cfp = cs = 1

Fig. 11: Acoustic pressure (upper side) and elastic velocity norm (lower side) at

times t ∈ {0, 0.025, 0.075, 0.15}
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III. Numerical results III.2. Ricker wavelet

Realistic test case with strong property contrast: Granite-Water

Material properties:

▶ Granite: ρs = 2800 kg.m−3, csp = 5000 m.s−1, cs = 3000 m.s−1

▶ Water: ρf = 997 kg.m−3, κ = 2.1× 109 Pa, cfp = 1450 m.s−1

Computational parameters: SDIRK(3,4), n = 8, l = 7, k = 2

Fig. 12: Left panel: Acoustic pressure (upper side) and elastic velocity norm (lower side)

at time t = 0.375s. Right panel: Comparison to analytical solution (Gar6more).
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III. Numerical results III.3. Sedimentary basin

Propagation of an elastic pulse in sedimentary basin and atmosphere

Material properties:

▶ Sedimentary basin: ρs = 1200 kg.m−3, csp = 3400 m.s−1, cs = 1400 m.s−1

▶ Bedrock: ρs = 5350 kg.m−3, csp = 3090 m.s−1, cs = 2570 m.s−1

▶ Air: ρf = 1.292 kg.m−3, cfp = 340 m.s−1

Computational parameters: SDIRK(3,4), k = 1, ℓ = 8, n = 9

Homogeneous Dirichlet boundary conditions

Initial condition: velocity Ricker wavelet centered at point (xc, yc) ∈ Ωscs

Fig. 13: Mesh of sedimentary basin
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III. Numerical results III.3. Sedimentary basin

Propagation of elastic pulse in sedimentary basin and atmosphere

Energy transfer enhancement above sedimentary basin

Fig. 14: Propagation of elastic pulse in sedimentary basin and atmosphere

Thank you for your attention !
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